Characterizations of error bounds for lower semicontinuous functions on metric spaces

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On error bounds for lower semicontinuous functions

We give some sufficient conditions for proper lower semicontinuous functions on metric spaces to have error bounds (with exponents). For a proper convex function f on a normed space X the existence of a local error bound implies that of a global error bound. If in addition X is a Banach space, then error bounds can be characterized by the subdifferential of f . In a reflexive Banach space X, we...

متن کامل

Error Bounds for Vector-valued Functions on Metric Spaces

In this paper, we attempt to extend the definition and existing local error bound criteria to vector-valued functions, or more generally, to functions taking values in a normed linear space. Some new primal space derivative-like objects – slopes – are introduced and a classification scheme of error bound criteria is presented.

متن کامل

About error bounds in metric spaces

The paper presents a general primal space classification scheme of necessary and sufficient criteria for the error bound property incorporating the existing conditions. Several primal space derivative-like objects – slopes – are used to characterize the error bound property of extended-real-valued functions on metric sapces.

متن کامل

Lower Semicontinuous Functions

We define the notions of lower and upper semicontinuity for functions from a metric space to the extended real line. We prove that a function is both lower and upper semicontinuous if and only if it is continuous. We also give several equivalent characterizations of lower semicontinuity. In particular, we prove that a function is lower semicontinuous if and only if its epigraph is a closed set....

متن کامل

Improved Error Bounds for Tree Representations of Metric Spaces

Estimating optimal phylogenetic trees or hierarchical clustering trees from metric data is an important problem in evolutionary biology and data analysis. Intuitively, the goodness-of-fit of a metric space to a tree depends on its inherent treeness, as well as other metric properties such as intrinsic dimension. Existing algorithms for embedding metric spaces into tree metrics provide distortio...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: ESAIM: Control, Optimisation and Calculus of Variations

سال: 2004

ISSN: 1292-8119,1262-3377

DOI: 10.1051/cocv:2004013